

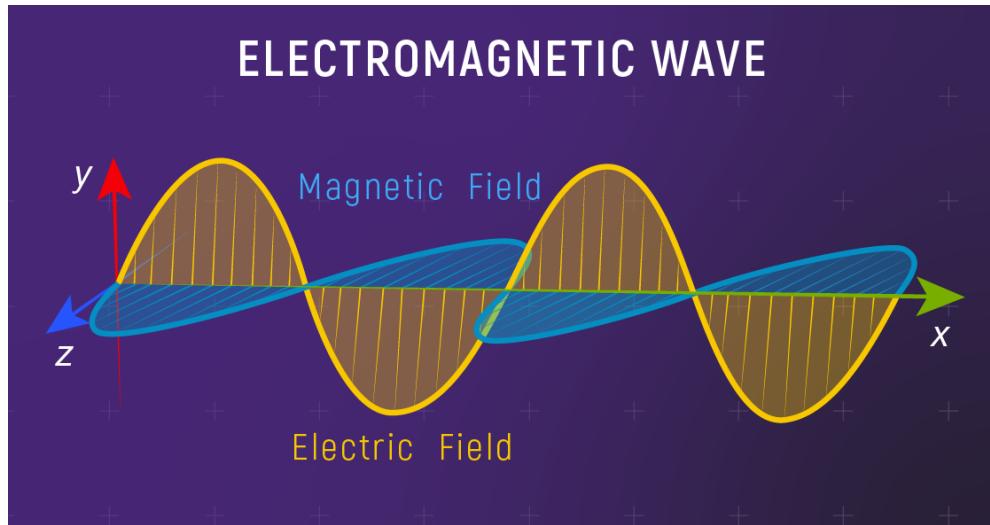
# Class 06

# Optical properties of semiconductors

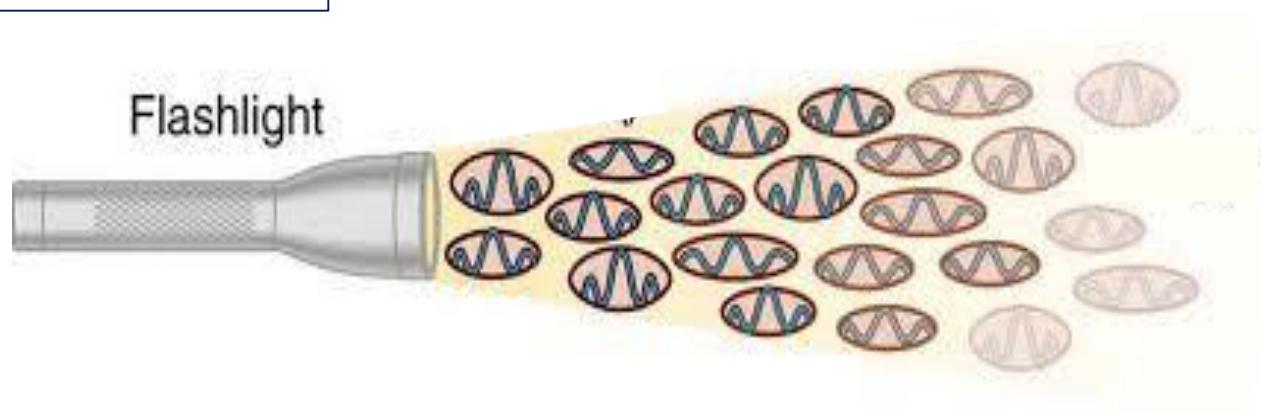
11.03.2025

- Absorption coefficient
  - Direct semiconductors
  - Indirect semiconductors
  - Tauc plot
  
- Optical phenomena in real crystals
  - Urbach tail
  - Amorphous vs crystalline
  - Excitons

# Wave-particle dual nature



*wavelength ( $\lambda$ )*



$$E = \frac{hc}{\lambda} = h\nu = \hbar\omega$$

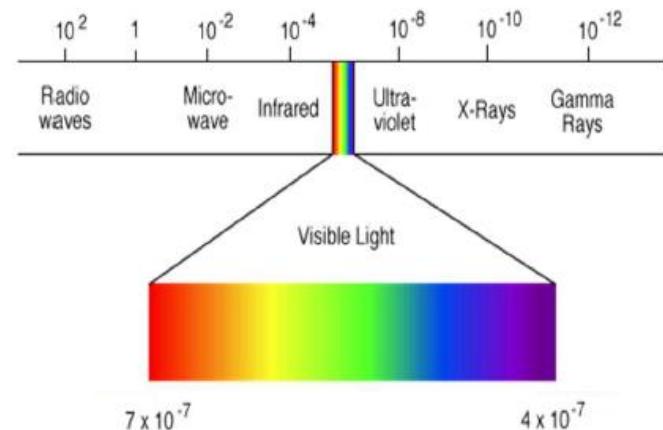


Table 9.1 Spectral ranges with relevance to semiconductor optical properties

| Range            |     | Wavelengths      | Energy        |
|------------------|-----|------------------|---------------|
| Deep ultraviolet | DUV | <250 nm          | >5 eV         |
| Ultraviolet      | UV  | 250–400 nm       | 3–5 eV        |
| Visible          | VIS | 400–800 nm       | 1.6–3 eV      |
| Near infrared    | NIR | 800 nm–2 $\mu$ m | 0.6–1.6 eV    |
| Mid-infrared     | MIR | 2–20 $\mu$ m     | 60 meV–0.6 eV |
| Far infrared     | FIR | 20–80 $\mu$ m    | 1.6–60 meV    |
| THz region       | THz | >80 $\mu$ m      | <1.6 meV      |

# Light absorption

## Light propagation in vacuum

$$E(z, t) = E_0 * \exp[i(kz - \omega t)] \quad \text{where } k = \frac{\omega}{c}$$

## Propagation velocity in an absorbing medium

$$v_p = \frac{c}{\check{n}} \quad k = \frac{\check{n}\omega}{c} \quad \text{where } \check{n} = n + i\kappa$$

Complex refractive index

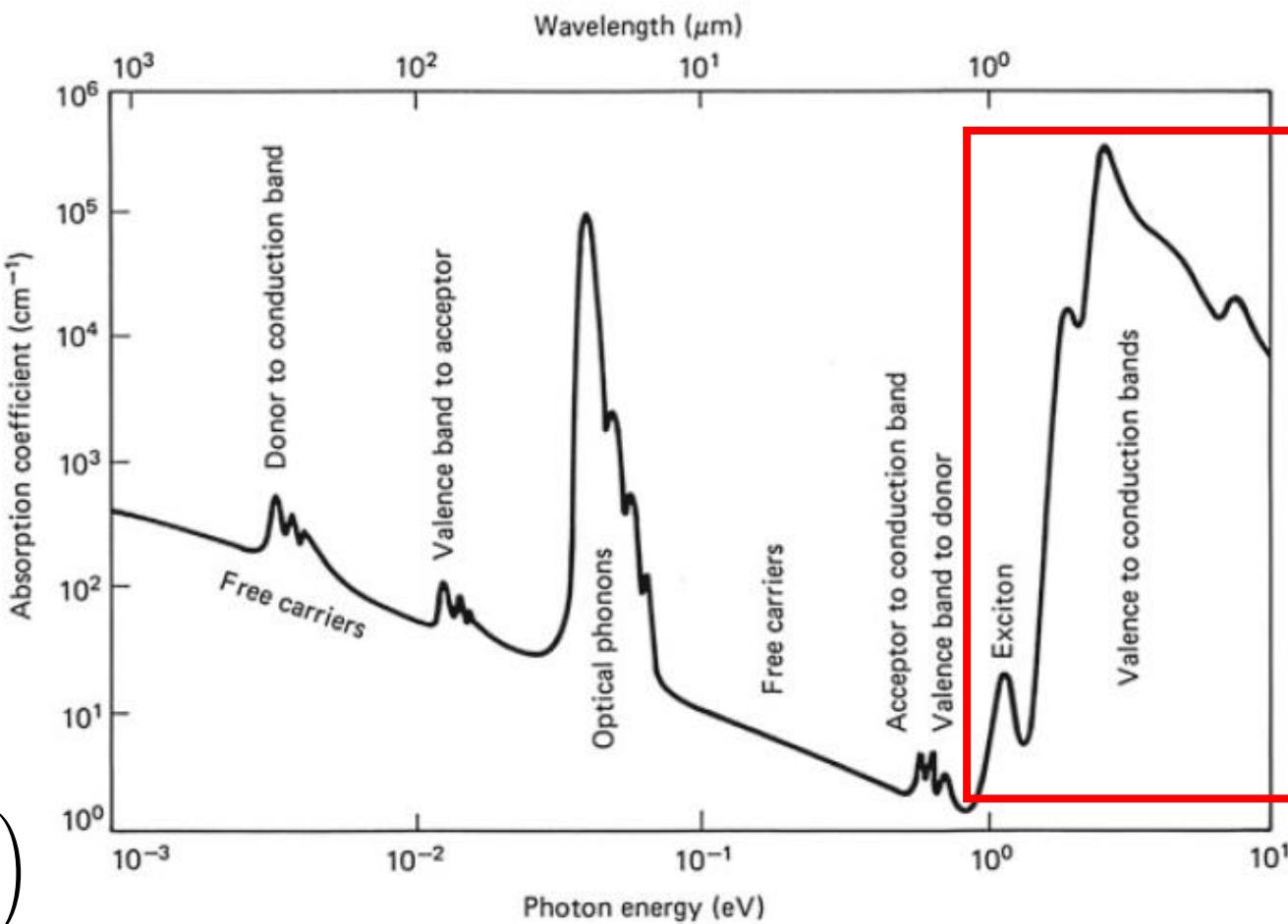
## Light propagation in an absorbing medium

$$E(z, t) = E_0 * \exp\left(-\frac{\kappa\omega}{c}z\right) * \exp\left[i\left(\frac{n\omega}{c}z - \omega t\right)\right]$$

$$I(z) = |E|^2 = |E_0|^2 * \exp\left(-\frac{2\kappa\omega}{c}z\right) = I_0 * \exp\left(-\frac{2\kappa\omega}{c}z\right)$$

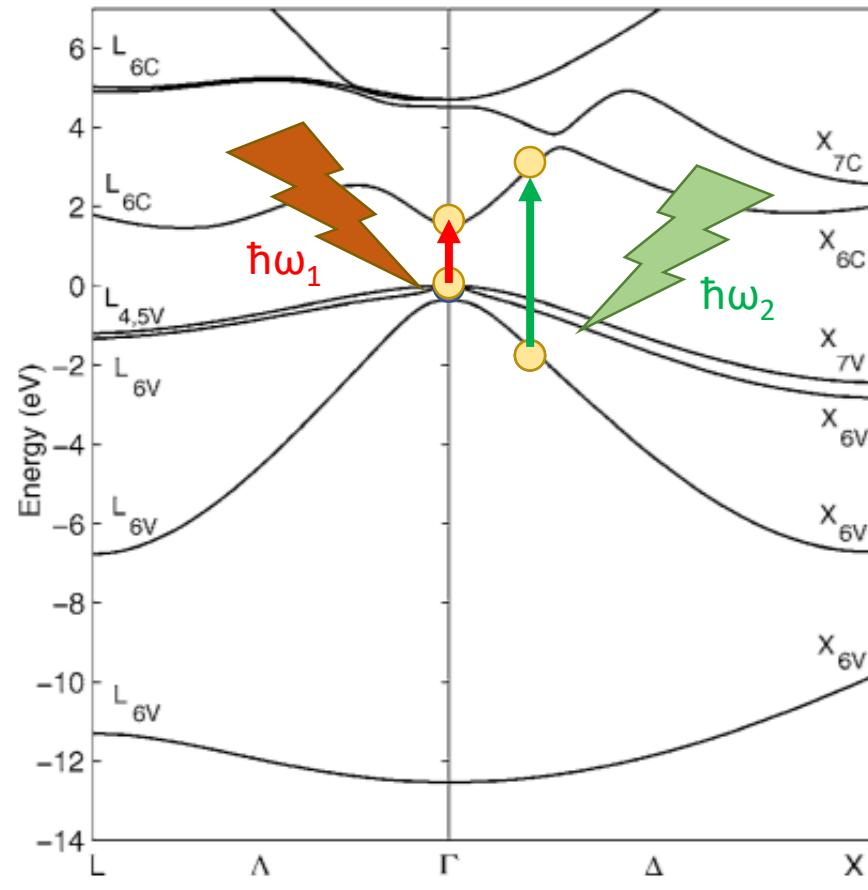
$$I(z) = I_0 * \exp(-\alpha z)$$

Lambert-Beer's law



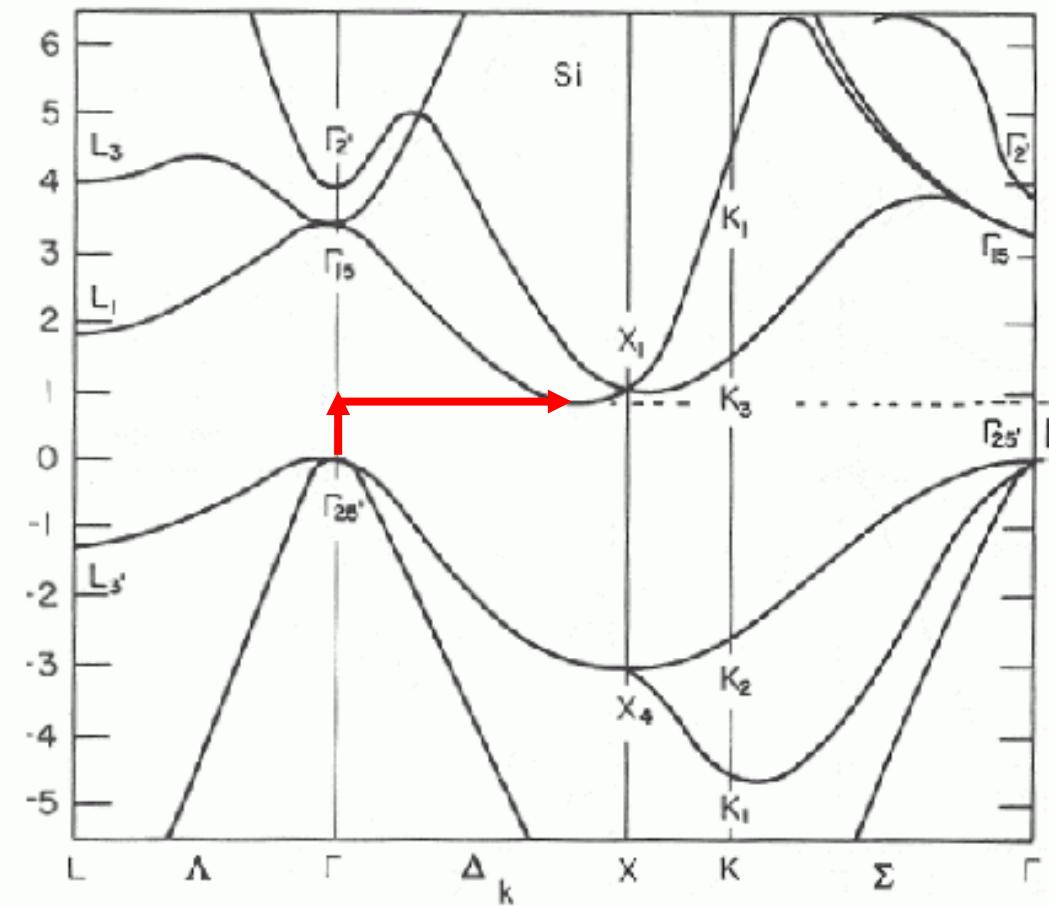
## Band to band absorption

**GaAs**



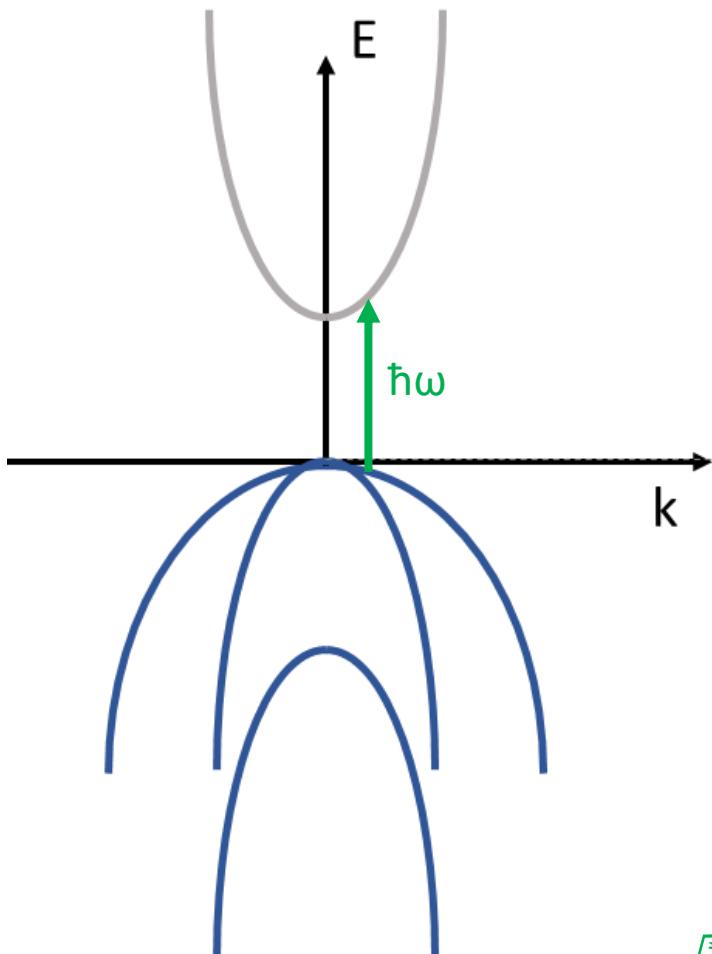
**Vertical transitions**

**Si**



**Non-vertical transitions**

# Photon absorption in direct semiconductors



Conservation of Energy

$$E_v = -\frac{\hbar^2 k^2}{2m_h^*}$$

$$E_c = E_g + \frac{\hbar^2 k^2}{2m_e^*}$$

$$\hbar\omega = E_g + \frac{\hbar^2 k^2}{2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right) = E_g + \frac{\hbar^2 k^2}{2m_r^*}$$

$$\frac{1}{m_r^*}$$

Joint Density of States (density of states available for a transition  $\hbar\omega$ )

$$D_j(E_{cv}) = 2 \int_{S(\tilde{E})} \frac{d^2 S}{(2\pi/L)^3} \frac{1}{|\nabla_{\mathbf{k}} E_{cv}|}$$

Gradient of  $E_c - E_v$  in k-space

$$g(\hbar\omega) \propto \frac{\sqrt{\hbar\omega - E_g}}{\hbar\omega}$$



The density of k states can be expressed as a quarter-spherical relation, including the spin-degeneracy:

$$g(k)dk = 2 * \frac{1}{8} * \frac{V}{\pi^3} * 4 * \pi k^2 dk$$

Spin-degeneracy

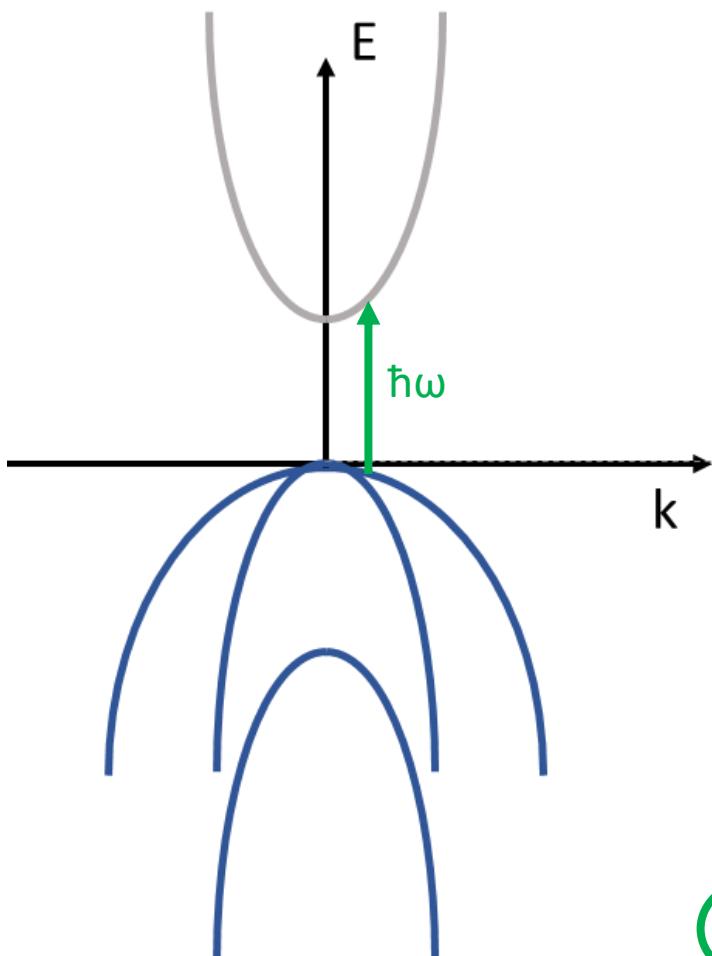
Volume of a single state

Volume of a slice of sphere in k-space

$$g(E) \propto \sqrt{E}$$

From DOS

# Photon absorption in direct semiconductors



## Conservation of Energy

$$E_v = -\frac{\hbar^2 k^2}{2m_h^*}$$

$$E_c = E_g + \frac{\hbar^2 k^2}{2m_e^*}$$

$$\hbar\omega = E_g + \frac{\hbar^2 k^2}{2} \left( \frac{1}{m_e^*} + \frac{1}{m_h^*} \right) = E_g + \frac{\hbar^2 k^2}{2m_r^*}$$

$$\frac{1}{m_r^*}$$

## Joint Density of States (density of states available for a transition $\hbar\omega$ )

$$D_j(E_{cv}) = 2 \int \frac{d^2 S}{(2\pi/L)^3} \frac{1}{| \nabla_{\mathbf{k}} E_{cv} |}$$

Gradient of  $E_c - E_v$  in  
k-space

## Transition rate (~absorption coefficient)

$$W_{fi} = \frac{2\pi}{\hbar} |M|^2 g(\hbar\omega) \delta(E_c - E_v - \hbar\omega)$$

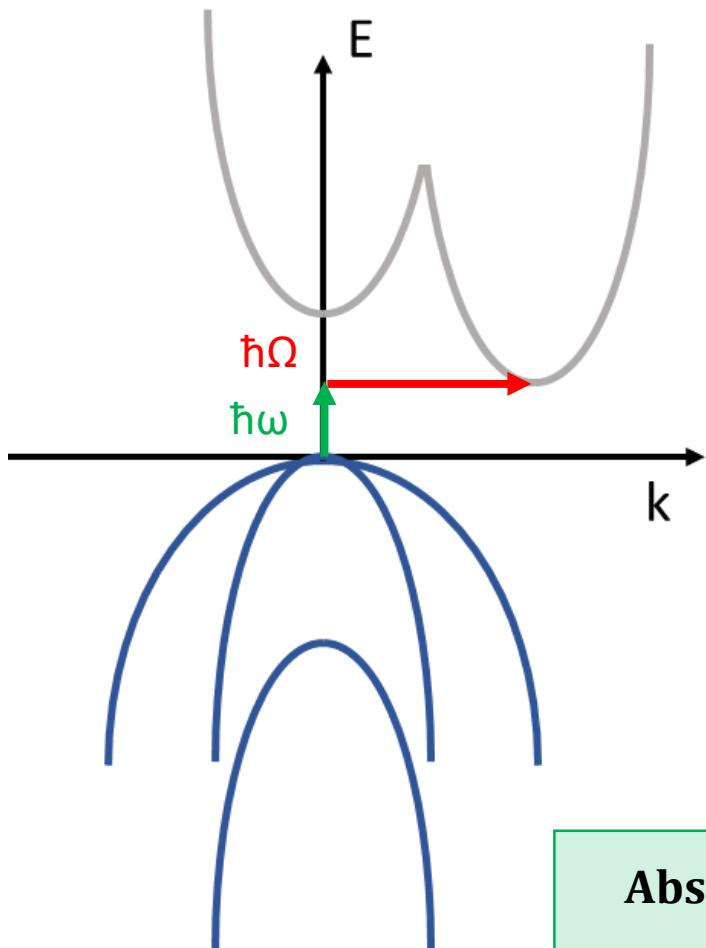
Rate of transitions from an initial state ( $\Psi_i$ ) to a final state ( $\Psi_f$ )

QM matrix to account for the symmetry of the system (=1 for bulk)

## Absorption coefficient

$$\alpha(\hbar\omega) \propto \frac{\sqrt{\hbar\omega - E_g}}{\hbar\omega}$$

# Photon absorption in indirect semiconductors



**Absorption coefficient**

$$\alpha(\hbar\omega) \propto \frac{(E_g - \hbar\omega \pm \hbar\Omega)^2}{\hbar\omega}$$

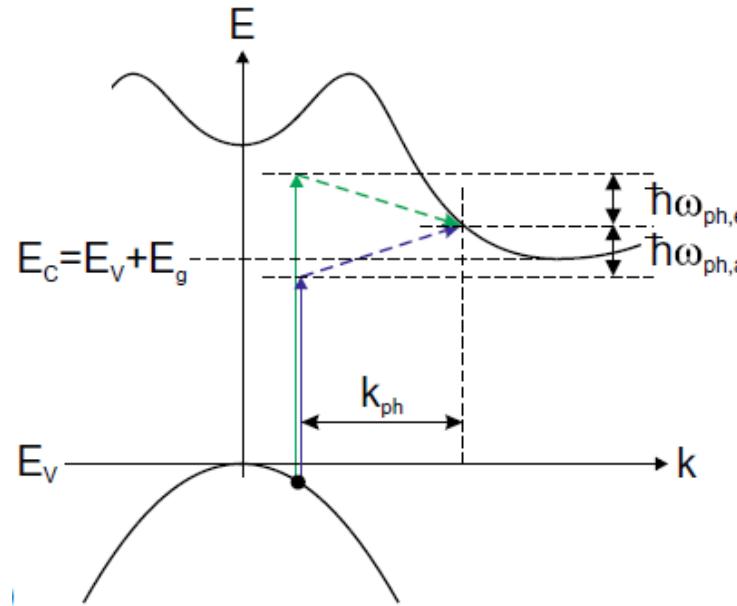
## 3- particle interaction (electron, photon, phonon)

Due to the increasing complexity of the interaction, the transition rate is expected to be lower than in the case of direct semiconductors.

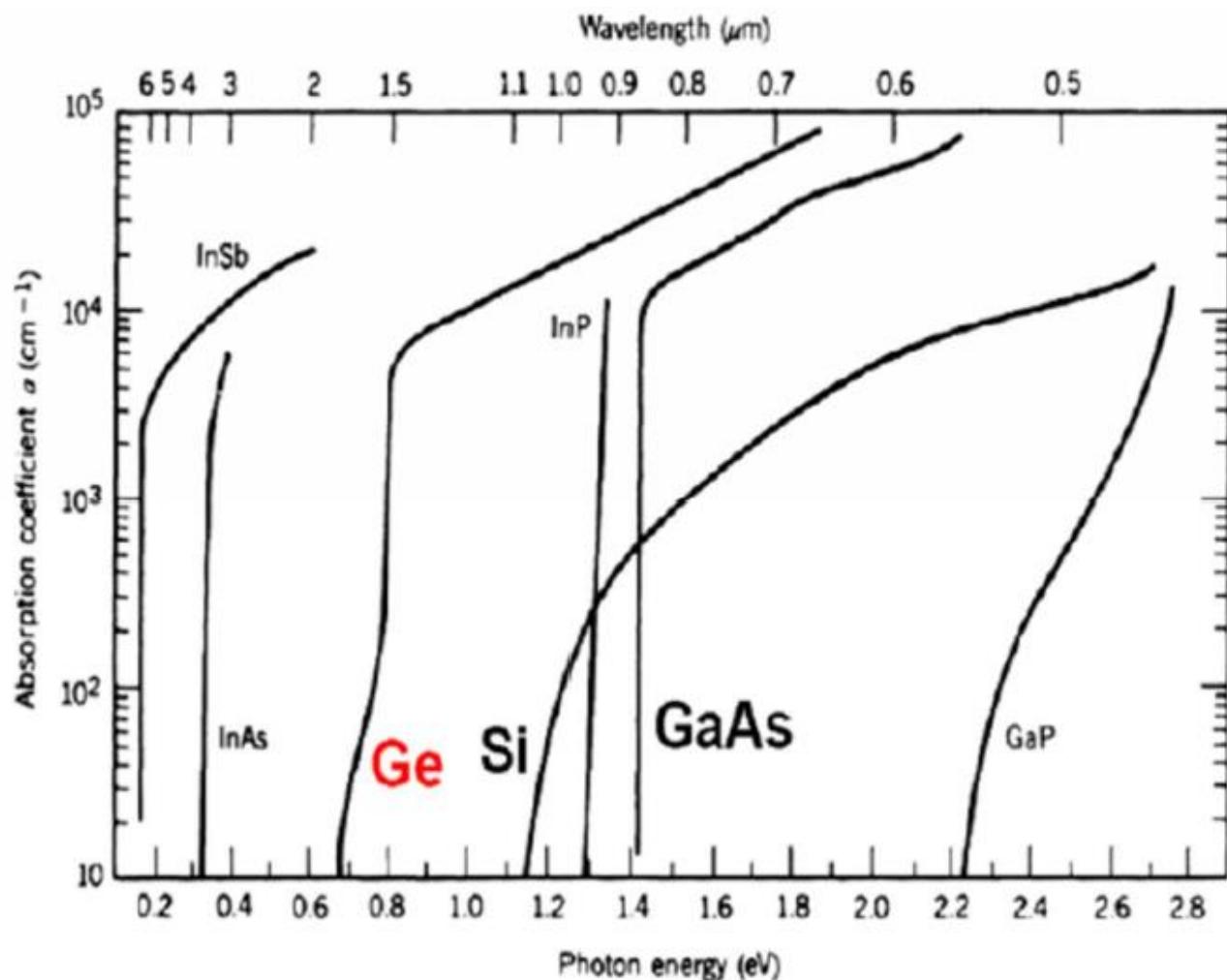
### Conservation of Energy

$$\hbar\omega = E_g + \frac{\hbar^2 k^2}{2m_r^*} \pm \hbar\Omega$$

The interaction with phonons allows energy exchange from/to the charge



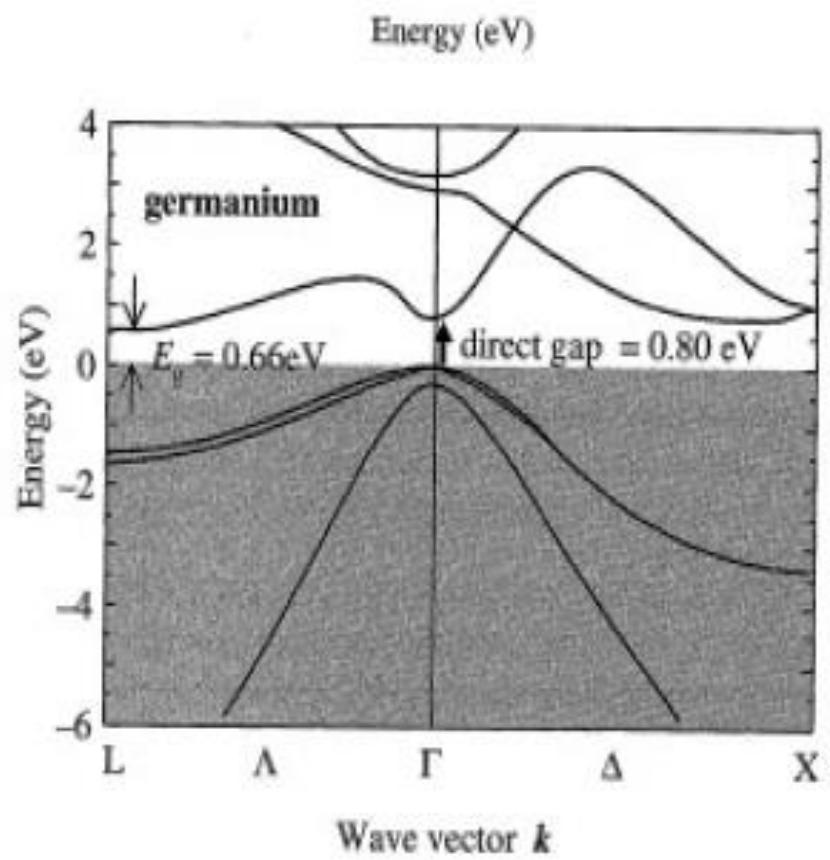
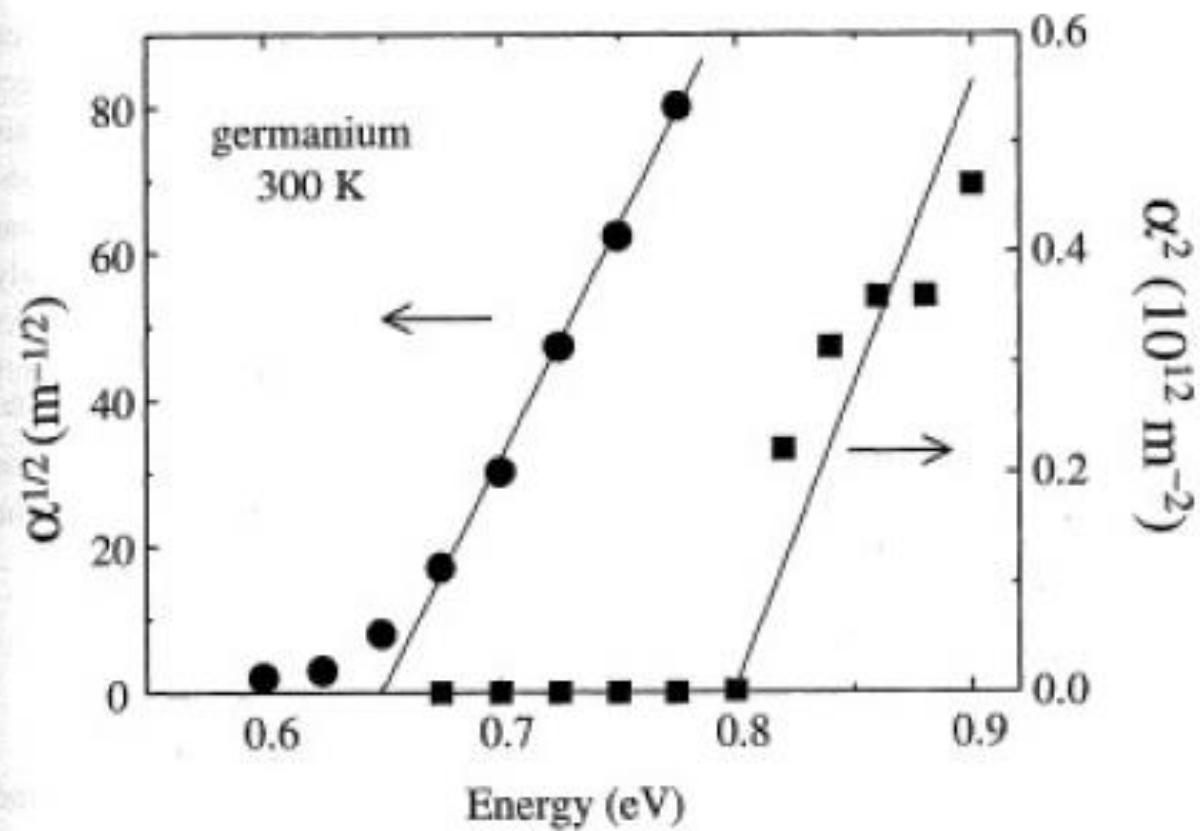
## Absorption coefficient of real crystals



Question:

Can you identify the direct semiconductors in the plot?  
If so, how?

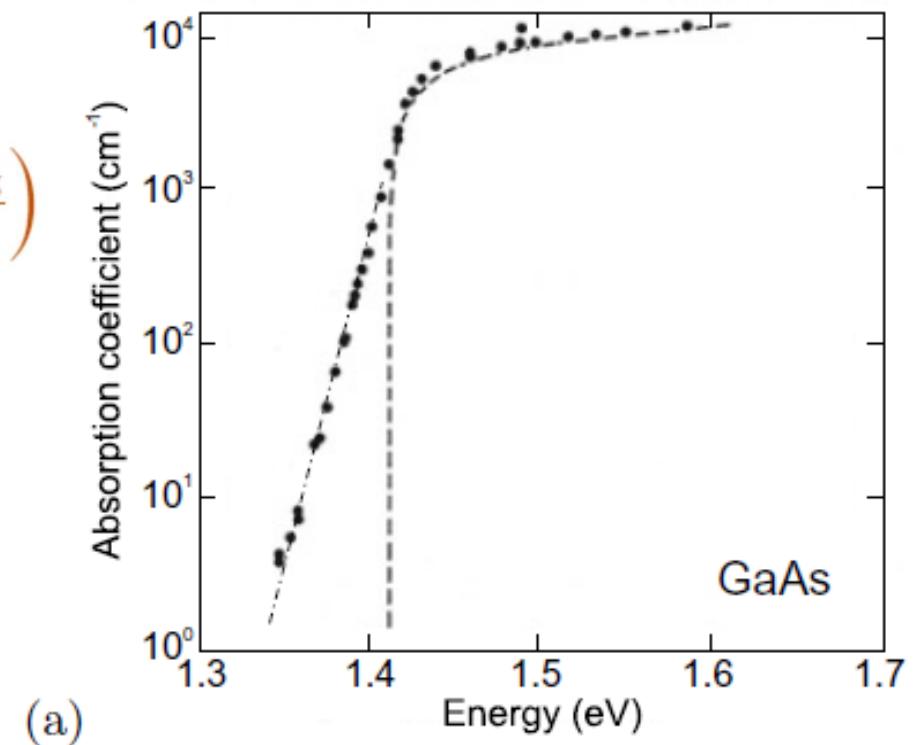
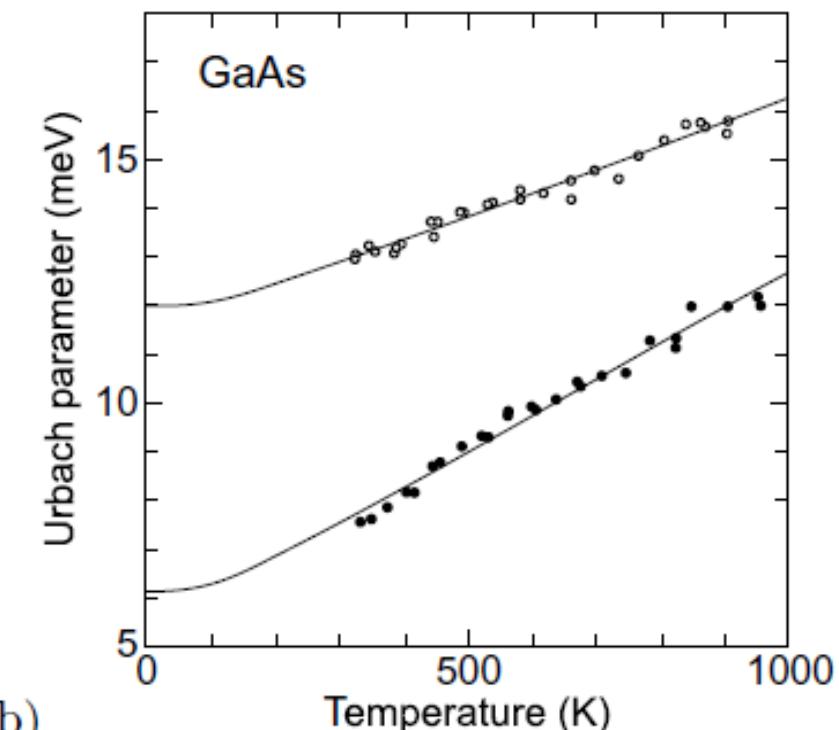
## Absorption coefficient of Ge



## Urbach Tail

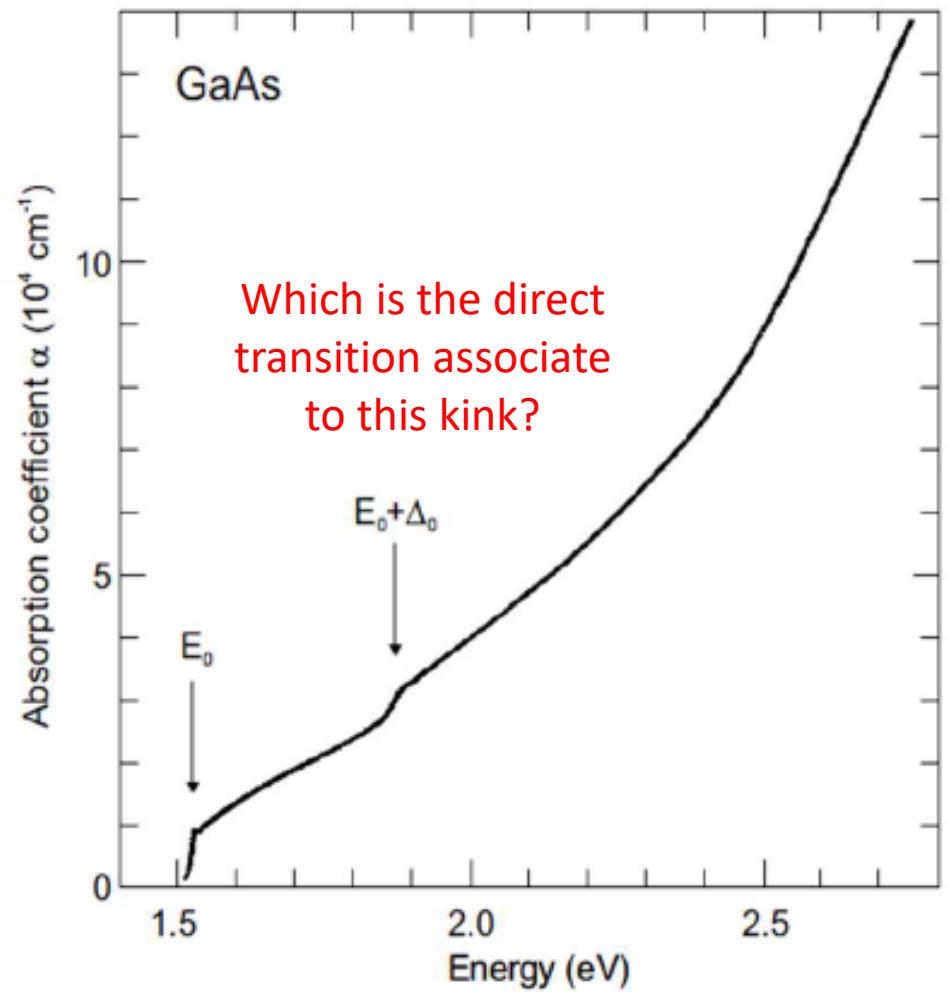
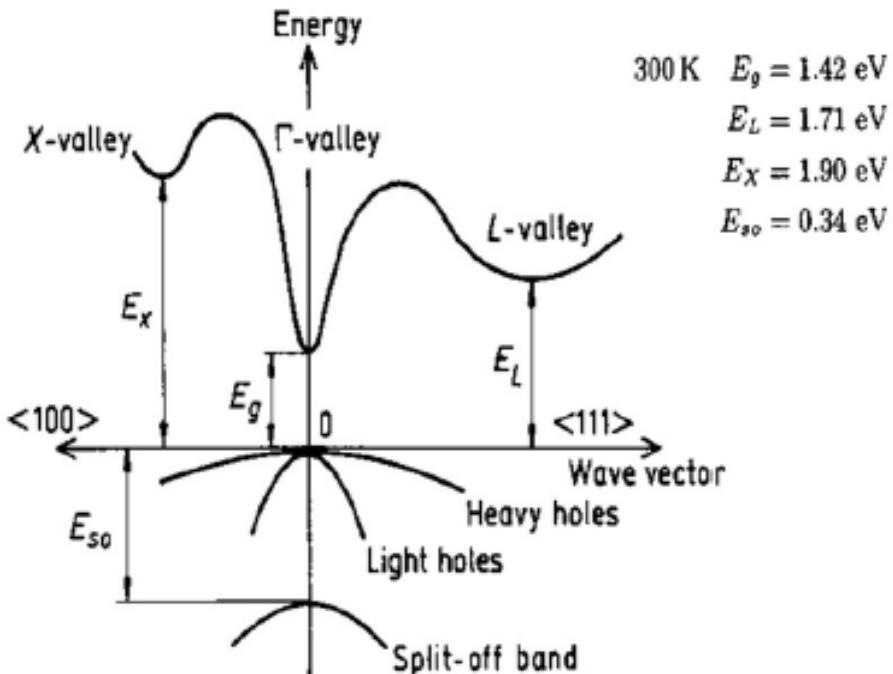
$$\alpha(E) \propto \exp\left(\frac{E - E_g}{E_0}\right)$$

Urbach Tail

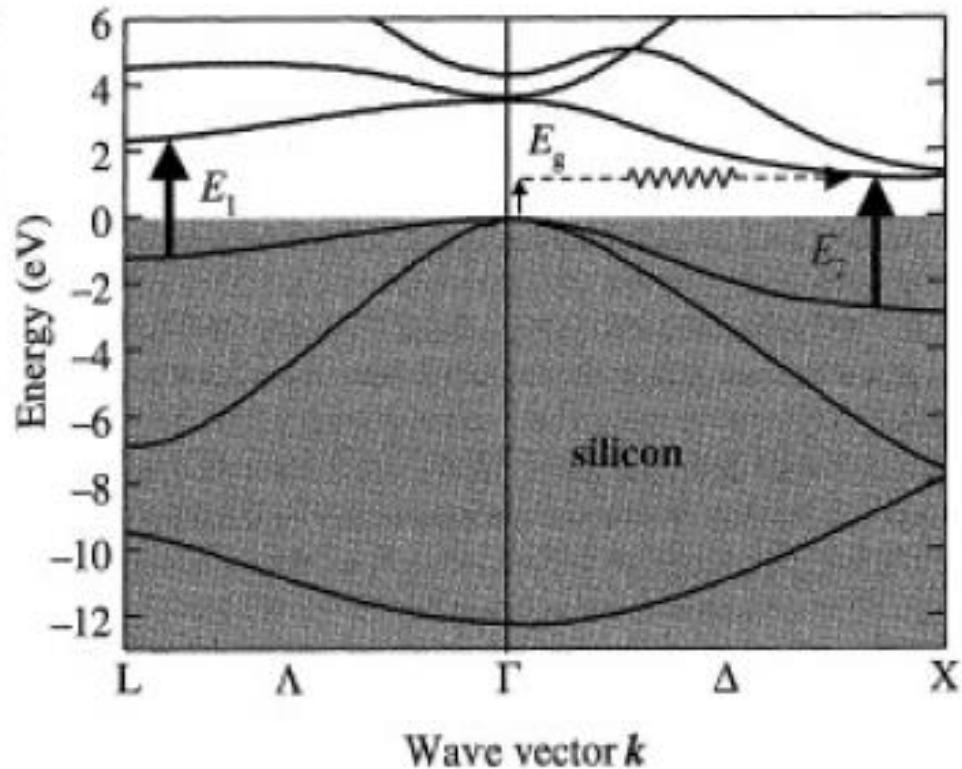
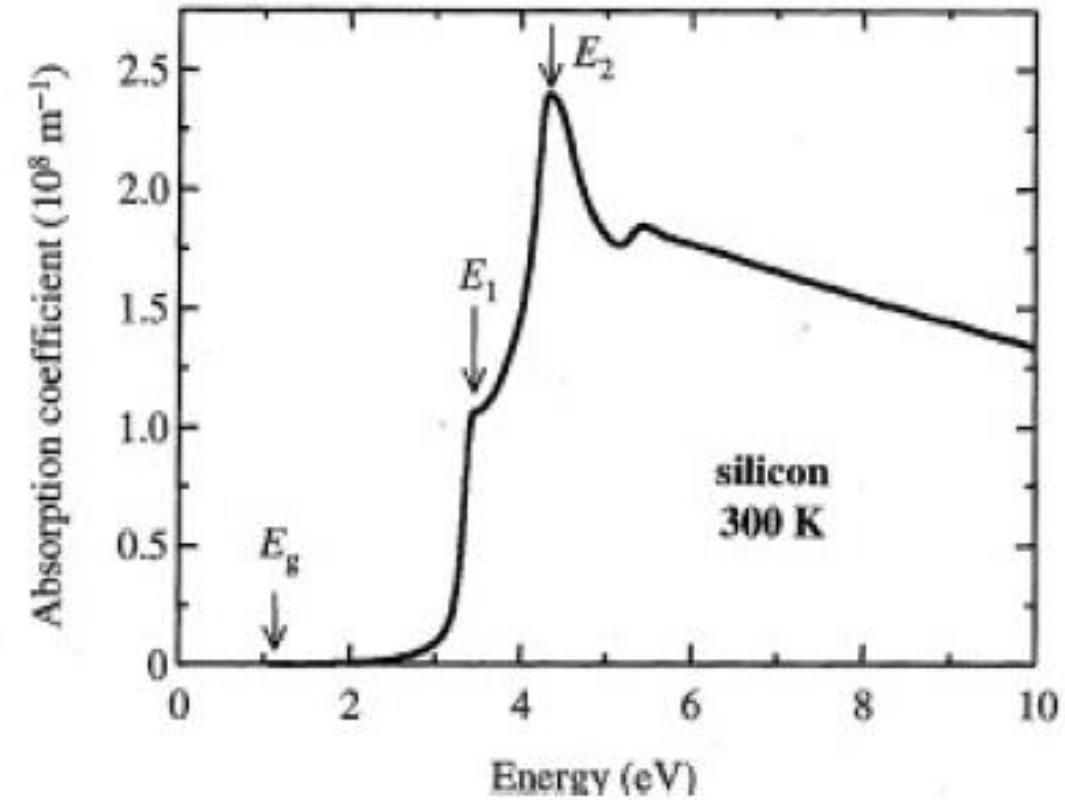


**Fig. 9.17** **a** Experimental absorption spectrum (*circles*) of GaAs at room temperature on a semilogarithmic plot. The exponential tail below the band gap is called the Urbach tail (the *dash-dotted* line corresponds to  $E_0 = 10.3$  meV in (9.48)). The *dashed line* is the theoretical dependence from (9.45). Adapted from [856]. **b** Temperature dependence of Urbach parameter  $E_0$  for two GaAs samples. Experimental data for undoped (*solid circles*) and Si-doped ( $n = 2 \times 10^{18} \text{ cm}^{-3}$ , *empty circles*) GaAs and theoretical fits (*solid lines*) with one-phonon model. Adapted from [854]

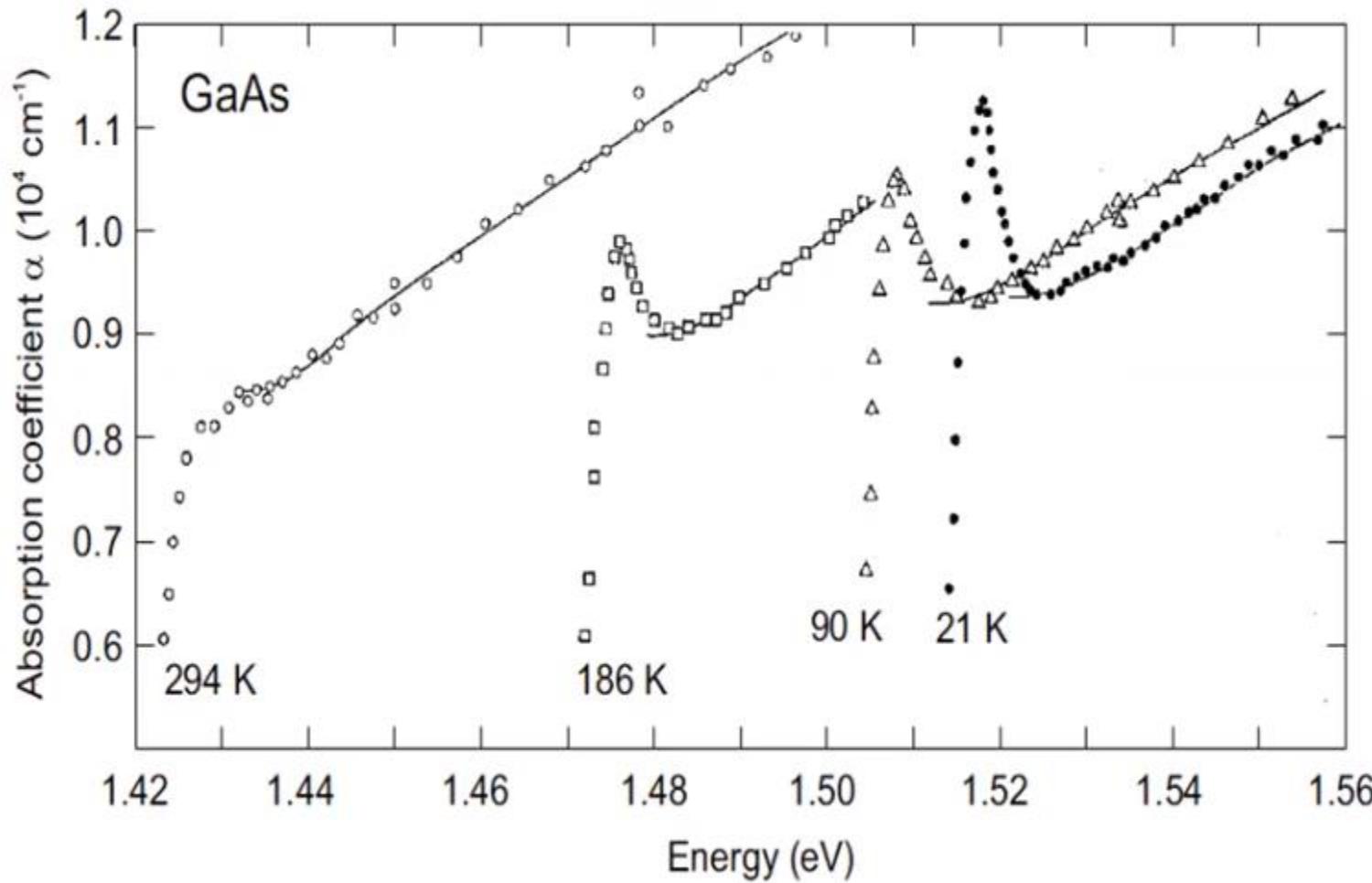
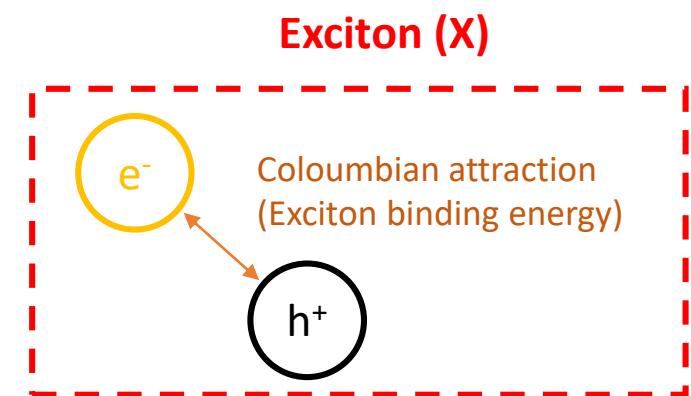
## Absorption at higher photon energies



## Direct vs indirect transitions in indirect semiconductors



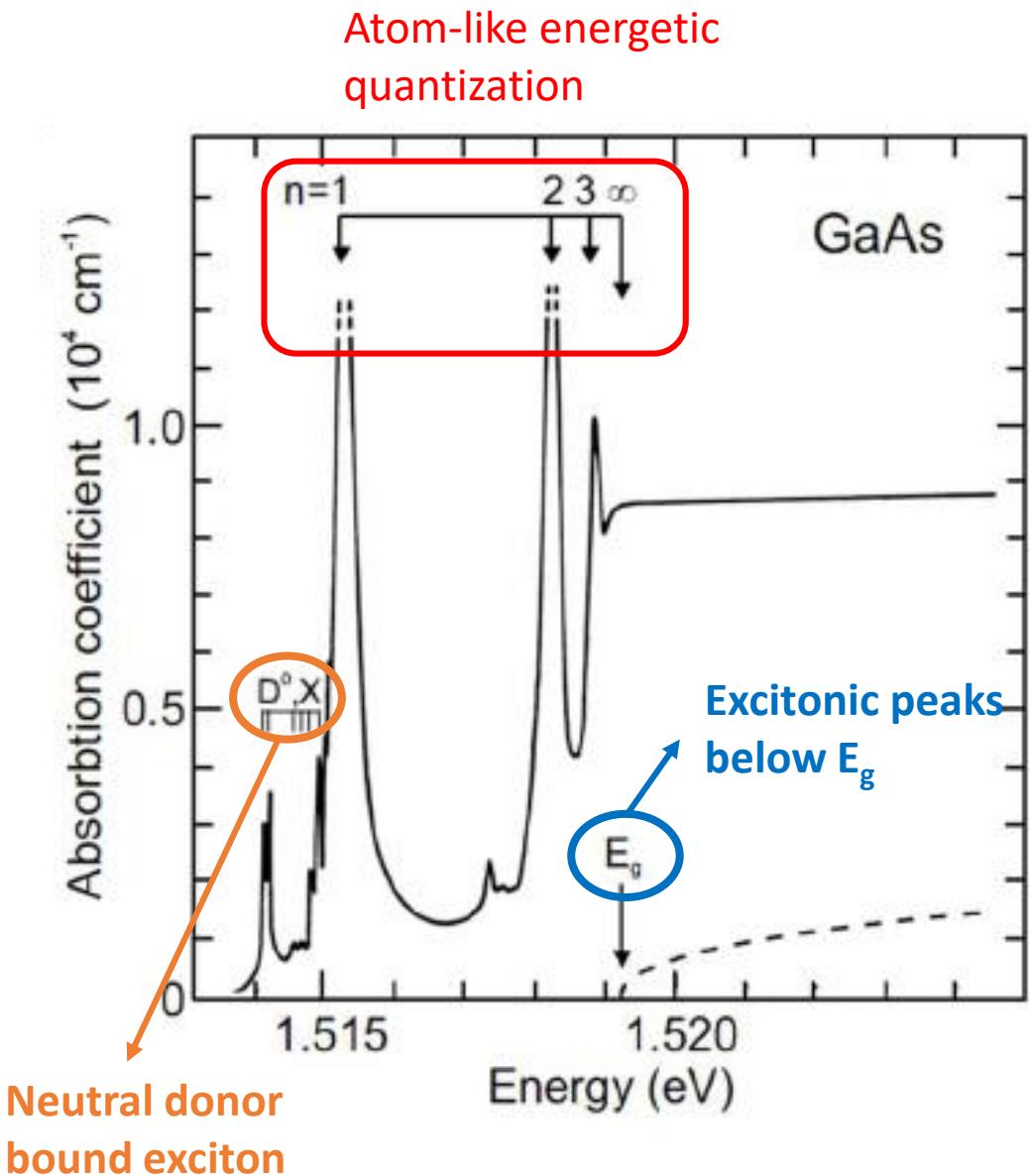
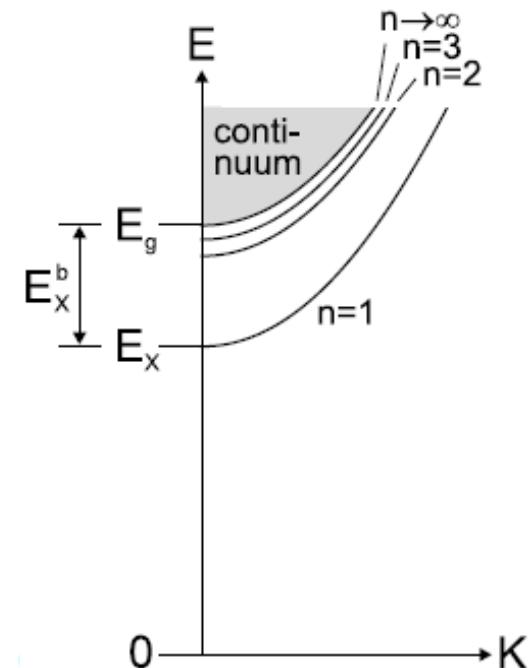
# Exciton



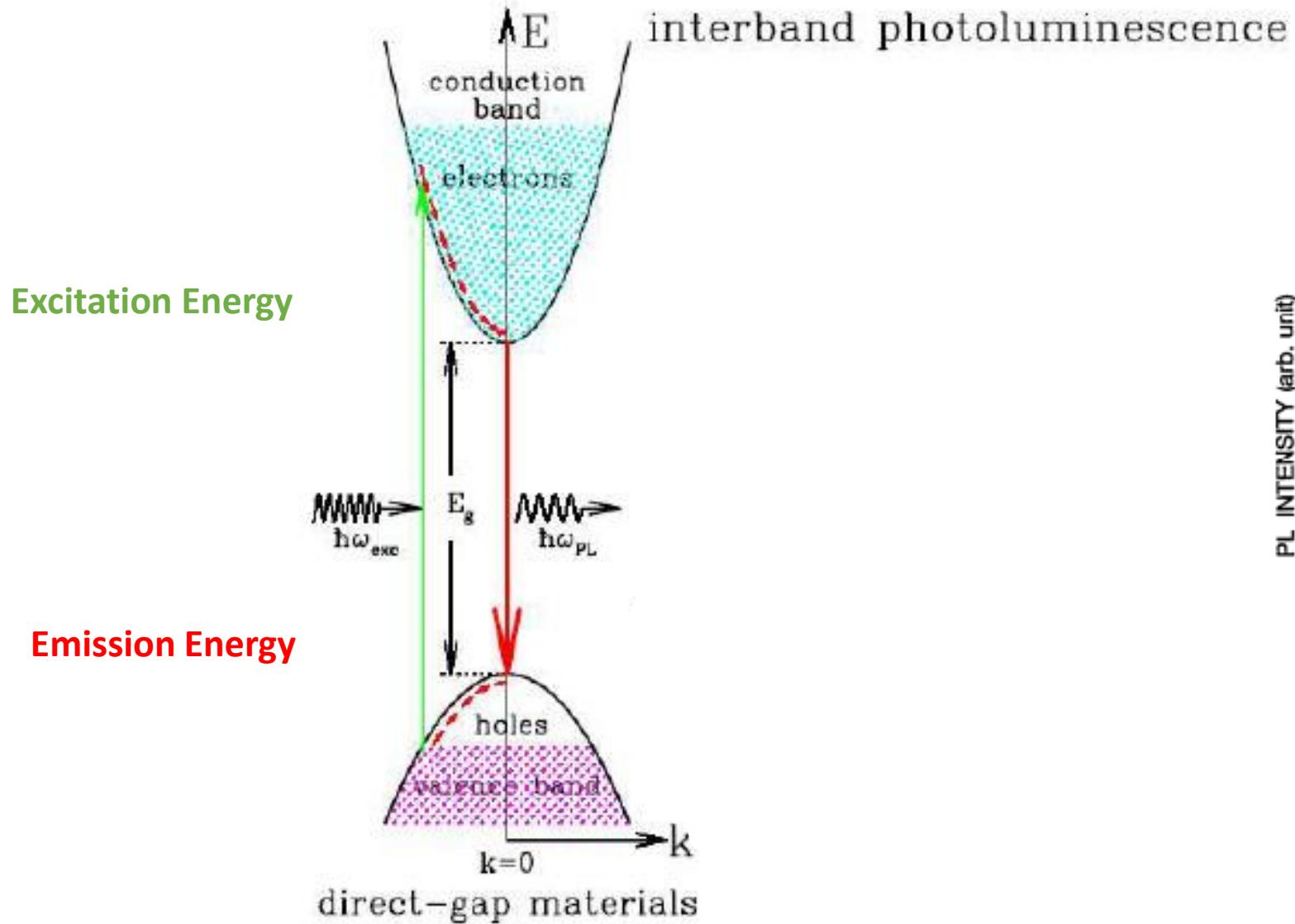
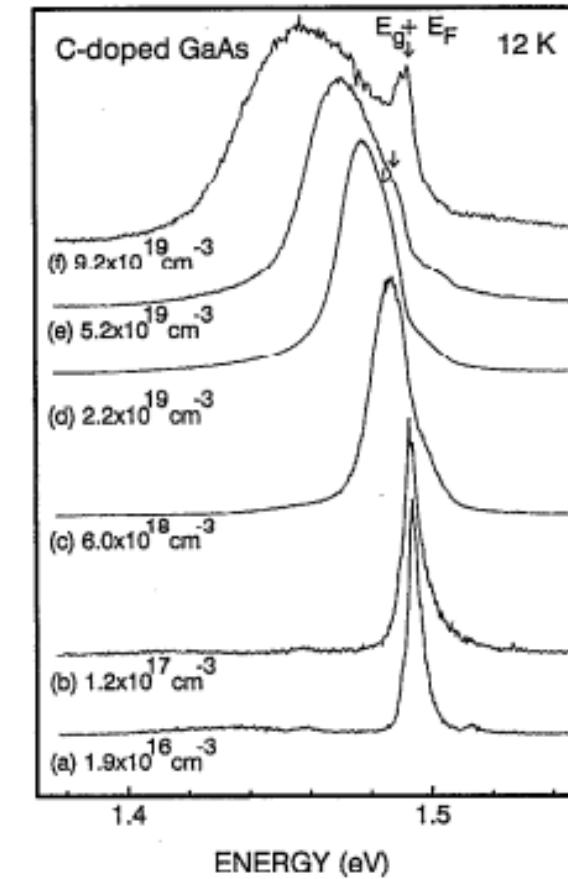
Due to the binding energy, the excitonic peaks lies below the BG

Different excitons can exists depending on their interaction with the surroundings

## Quantum nature of exciton



# Photoluminescence



Low T PL spectra for doped GaAs